Language embeddings that preserve staging and safety

Todd L. Veldhuizen, Chalmers University of Technology

Abstract. We study embeddings of programming languages into one another that preserve what reductions take place at compile-time, i.e., staging. A certain condition — what we call a ‘Turing complete kernel’ — is sufficient for a language to be stage-universal in the sense that any language may be embedded in it while preserving staging. A similar line of reasoning yields the notion of safety-preserving embeddings, and a useful characterization of safety-universality. Languages universal with respect to staging and safety are good candidates for realizing domain-specific embedded languages (DSELs) and ‘active libraries’ that provide domain-specific optimizations and safety checks.

1. Introduction

Embeddings of programming languages into one another are useful in studying their relative power and, sometimes, finding languages that are universal in some sense. Examples include Turing-reducibility for studying computability, poly-time reductions for subrecursive languages, and ‘structure-preserving’ embeddings for expressiveness.

To further a search for languages suited to realizing domain-specific embedded languages (DSELs) and “active libraries,” we propose stage-preserving embeddings as a tool to study languages in which some evaluation or simplification is guaranteed to take place at compile-time. Such guarantees can be wielded to realize domain-specific optimizations and safety checks. The principal result shown here is that if a language has what we call a ‘Turing-complete kernel,’ it is universal in the sense that any language may be embedded into it while preserving staging and safety properties.

1.1 Some background on computability

Throughout this paper we shall rely on some basic notions from computability theory. We say a set of natural numbers \(S \subseteq \mathbb{N} \) is decidable or equivalently \(\Delta^0_1 \) when there exists a Turing machine that given as input any \(x \in \mathbb{N} \) can decide whether \(x \in S \). A set \(S \subseteq \mathbb{N} \) is computably enumerable or \(\Sigma^0_1 \) when there exists a Turing machine that given input \(x \in \mathbb{N} \) will halt exactly when \(x \in S \). (We follow the recommendation of Soare that the traditional term recursively enumerable be retired in favour of the more descriptive term computably enumerable.) These notions extend easily to sets of strings and terms by employing an appropriate coding of objects.

Received July 19, 2011.
by natural numbers. For example, strings over a finite alphabet Λ can be encoded by treating a string $x \in \Lambda^*$ as a base-$|\Lambda|$ natural number; we may then speak of a set of strings over Λ as computably enumerable or decidable. A function implemented by a computer is appropriately modelled by a partial function, since the computation may fail to terminate for some values of the domain. A partial function $f : \mathbb{N} \to \mathbb{N}$ is computably enumerable or Σ^0_1 when it is computable by a Turing machine; in this case we say f is a partial computable function.

2. Stage-preserving embeddings

The formalization of programming languages and compilers is susceptible to fussiness, and to keep this at bay I propose to be precise where it matters and vague where it does not. Let us adopt a grossly simplified view, typical of computability, in which a programming language is merely a set of programs represented by binary strings. One way to achieve this perspective is to view the program text (a sequence of characters) as a single, large binary string. We shall suppose the programming languages of interest are all being compiled to one implementation language L_M — the subscript M suggesting a machine language. To speak of translations being semantics-preserving, we require that L_M comes paired with an equivalence \sim on machine language programs capturing some desired notion of program equivalence — the precise meaning of \sim does not matter for our purposes. For two programs $p, p' \in L_M$, we write $p \sim p'$ to mean they do the same thing.

We define programming languages in terms of their compilation to L_M.

Definition 1. A programming language is a pair (L_A, ϕ_A) with L_A a decidable set of binary strings representing valid programs, and $\phi_A : L_A \to L_M$ a compilation map required to be computably enumerable.

Some languages have compilers that do not necessarily terminate — C++ and MetaML are examples [Böhme and Manthey 2003, Taha and Sheard 2000]. For this reason compilers are appropriately modelled by computably enumerable partial functions, rather than total functions. To keep the notational convenience of total functions we employ the usual device of introducing a special element $\bot \in L_M$ to indicate a nonterminating compilation, and require that \bot is in a singleton equivalence class under \sim, i.e., $p \sim \bot$ if and only if $p = \bot$.

Definition 2. A language embedding $e : L_A \to L_B$ is an injective and computable function that is semantics-preserving, i.e., $\phi_A(p) \sim \phi_B(ep)$ for all $p \in L_A$.

The typical scenario we shall consider is illustrated by this diagram:

\[
\begin{aligned}
&L_A \xrightarrow{e} L_u \\
&\phi_A \downarrow \quad \phi_u \downarrow \\
&L_M
\end{aligned}
\]

We have two source languages \(L_A\) and \(L_u\), compilers \(\phi_A\) and \(\phi_u\) for them, and we consider an embedding \(e : L_A \rightarrow L_u\). We ask when embeddings that preserve properties of interest (semantics, staging, safety) exist. The scenario of special interest is when \(L_u\) is some language purporting to be ‘universal.’

We use the notion of stages to address compile-time computations (cf. [Jones et al. 1993, Taha and Sheard 2000]). We are interested in embeddings that are stage-preserving: if a computation occurs at compile time in language \(L_A\), then it occurs at compile time in language \(L_u\). This can be conveniently addressed using the kernel of the compiler. Recall that the kernel of a map \(\phi\) is:

\[
\ker(\phi) = \{(p_1, p_2) | \phi(p_1) = \phi(p_2)\}
\]

The kernel of a compiler is a simple but versatile notion. The kernel is an equivalence relation; every program in a kernel-equivalence class compiles to the same target program. Kernels capture staging — from the kernel one can deduce what compile-time reductions take place. For instance, a language whose compile-time evaluations are defined by a rewrite relation \(\rightarrow\) must satisfy \(\rightarrow \subseteq \ker(\phi)\), where \(\phi\) is its compiler (Figure 1 shows an example of some MetaML-like terms). A useful analogy may be drawn to linear algebra, where the kernel of a linear transformation yields its nullspace. When a vector is transformed, every component lying in the nullspace is zeroed. Analogously, any code lying in the kernel of the compiler ‘disappears’ at compile-time. Thus we can view the kernel as a staging specification and use it to formalize the notion of a stage-preserving embedding.\(^1\)

DEFINITION 3. An embedding \(e : L_A \rightarrow L_u\) is stage-preserving when it satisfies \((p_1, p_2) \in \ker(\phi_A) \Rightarrow (ep_1, ep_2) \in \ker(\phi_u)\).

Figure 2 illustrates. The kernel of a compiler gives us a measure of its staging power, that is, its ability to reduce computations at compile time. Defn. 3 effectively says: to increase the staging power of a language, make

\(^1\) The kernel is related to, but different from, binding-time specifications (cf. Jones 1996, Jones et al. 1993): the kernel indicates which programs will compile to the same target program, whereas binding-times indicate which terms are replaceable by constants. These two ideas coincide in some situations, e.g., when programs are terms, the compilation map is compositional, and only partial evaluation is taking place.
its kernel larger. But at what point is a kernel “big enough” that we can embed any language into it and preserve staging? To answer this, let us order languages, writing \(L_A \leq_S L_B \) to mean there exists a stage-preserving embedding \(e : L_A \rightarrow L_B \). The relation \(\leq_S \) is a preorder, i.e., reflexive and transitive, but not necessarily anti-symmetric. Given languages \(L_A, L_B, L_C, L_D, \cdots \) we might have the following diagram of \(\leq_S \), with arrows indicating the existence of stage-preserving embeddings:

![Diagram](image)

The obvious question is whether there might exist languages maximal in the order \(\leq_S \); we call such languages *stage-universal*.

Fig. 1: Illustration of the kernel of a compiler \(\phi \) for some terms in a hypothetical staged language with the *escape* operator \(\sim() \). Expressions enclosed by \(\sim() \) are evaluated at compile time. The kernel gives equivalence classes of source programs that map to the same compiled program, in this case \(\ker(\phi) \) yields the equivalence classes \(\{\{x + 2, x + \sim(1 + 1), x + \sim(1 + (2 - 1))\}, \{y + 2, y + \sim(4 - 2)\}\} \).
Fig. 2: Illustration of stage-preserving embedding. If two programs in L_A compile to the same program in L_M, then after embedding in L_u they must still compile to the same program. Note, though, that it is not required that $\phi_A(p) = \phi_u(ep)$, i.e., we do not expect to get the same target program going either route, though this would be agreeable should it happen.

Definition 4. A programming language is stage-universal when there is a stage-preserving embedding of any other programming language into it.

The term stage-complete would do equally well. Now let us show that such languages exist and have a useful characterization. We shall construct such a language and refer to it as L_u, the subscript here indicating universal. The universal language L_u is required to provide some standard features of programming languages:

1. We assume there is an effective coding $\langle \cdot \rangle$ of the languages L_A, L_M in L_u; this means we can represent a program in L_A by some term or computation in the language L_u, and thereby examine and manipulate it. If $p \in L_A$ is a program then $\langle p \rangle$ may be thought of as a representation of p by its parse tree, as a string of characters, or (more traditionally) a very large natural number; the particulars do not matter so long as the encoding is unique and computable.

2. We shall want to manipulate representations of programs in L_u, so we assume L_u permits the construction of functions over codes (e.g., functions that manipulate parse trees), and write $F(c)$ to mean the application of such a function F to a code c. It is useful to distinguish between functions implemented in L_u, e.g., purely functional manipulations of coded programs, and programs such as interpreters that take such codes and produce behaviour. For a program P taking as
argument some code x, we write $P[x]$.

(3) We assume L_u has function composition:

- If there are L_u-functions F and G, then there is an L_u-function $F \circ G$.
- If there is a program $P[\cdot]$ and an L_u-function $F(\cdot)$, then the construction $P[F(\cdot)]$ is meaningful: there is some program $P_F[\cdot]$ such that $P_F[y] \sim P[x]$ when $x = F(y)$.

Much of what follows relies on the ability to interpret L_M programs in L_u.

Definition 5. An interpreter for the machine language L_M in the language L_u is a program $I_M[\cdot]$ such that for every machine-language program $p_m \in L_M$, the interpreted version of p_m is equivalent to p_m:

$$\phi_u(I_M[\Gamma p_m \Gamma]) \sim p_m$$

That is, if we take some machine-language program p_m and ‘code’ it as (for example) a syntax tree $\Gamma p_m \Gamma$ and give it to the interpreter I_M, then I_M running $\Gamma p_m \Gamma$ behaves the same way as the program p_m. The existence of such an interpreter ensures that the language L_u does not lose basic capabilities of the language L_M, such as the ability to interact with the operating system and so forth. This is of concern when dealing with interactive systems (a.k.a. processes, reactive systems, etc.) rather than purely functional programs. The existence of such an interpreter guarantees that ϕ_u is onto the equivalence classes L_u/\sim giving the possible behaviours of L_M programs. That is, for every machine-language program $p_m \in L_M$, there is a program $p_u \in L_u$ such that p_u is indistinguishable in behaviour from p_m, i.e., $\phi_u(p_u) \sim p_m$.

What we need next is some vocabulary to discuss compile-time computations in the language L_u. We work from the assumption stated earlier that L_u has a mechanism for defining functions.

Definition 6. A partial function f is ‘realizable in the kernel’ of ϕ_u if there exists an L_u function F such that for any program P taking as argument a code, and for any x, y such that $y = f(x)$:

$$\phi_u(P[F(\Gamma x \Gamma)]) = \phi_u(P[\Gamma y \Gamma])$$

Or, equivalently, $(P[F(\Gamma x \Gamma)], P[\Gamma y \Gamma]) \in \ker(\phi_u)$.

This means, more or less, that the partial function F is evaluated at compile time.

We now give a sufficient condition for stage-universality, inspired by ideas from partial evaluation, in particular Jones-optimality [Jones et al. 1993] and the Futamura projections [Futamura 1971]. The proof is boilerplate computability theory and partial evaluation. We rely heavily on the assumption (stated earlier) that compilers are Σ^0_1 functions.

Theorem 1. If
(i) there is an interpreter $I_M[\cdot]$ for L_M in L_u; and
(ii) any Σ_1^0 function f is realizable in the kernel of ϕ_u, then the language L_u is stage-universal.

Proof. Pick a language and compiler L_A and ϕ_A. Since ϕ_A is Σ_1^0, by (ii) there is a L_u-function Φ_A realizing it such that if $p_m = \phi_u(p_a)$ then $\phi_u(P[\Phi_A(⌜p_a⌝)]) = \phi_u(P[⌜p_m⌝])$ for any program P taking a code-argument.

Consider the embedding $e : L_A \rightarrow L_u$ given by:

$$e(p_a) = I_M[\Phi_A(⌜p_a⌝)] \quad (5)$$

where $I_M[\cdot]$ is the L_m interpreter whose existence is ensured by (i). Recall from Defn. 4 that e is stage preserving when $(p_1, p_2) \in \ker(\phi_a) \Rightarrow (ep_1, ep_2) \in \ker(\phi_u)$. Choose p_1, p_2 such that $(p_1, p_2) \in \ker(\phi_a)$. Then there is a p_m such that $\phi_a(p_1) = \phi_a(p_2) = p_m$, and from the choice of Φ_A,

$$\phi_u(I_M[\Phi_A(⌜p_1⌝)]) = \phi_u(I_M[⌜p_m⌝]) \quad \text{and} \quad \phi_u(I_M[\Phi_A(⌜p_2⌝)]) = \phi_u(I_M[⌜p_m⌝]) \quad (6)$$

Therefore $\phi_u(ep_1) = \phi_u(ep_2)$, or $(ep_1, ep_2) \in \ker(\phi_u)$, and the embedding e is stage-preserving. Since such an embedding exists for any language L_A, the language L_u is stage-universal. \blacksquare

We shall be sloppy henceforth and refer to a “Turing-complete kernel” to mean the properties listed in Theorem 1.

The construction in the proof above is not of immediate practical use; there is no guarantee that an interpreted program $\phi_u(I_M[\Phi_A(⌜p⌝)])$ will run anywhere near as fast as $\phi_A(p)$ (cf. Jones-optimality [Jones et al. 1993]). It does, however, give sufficient conditions for languages to be stage-universal.

A language with a Turing-complete kernel can, in principle, subsume any staged language.

This suggests we look to such languages to realize DSELs and ‘active libraries.’ The construction above would be useful if ϕ_u found programs that were ‘optimal.’ That is, if the compiler ϕ_u were to find fastest, smallest, etc. programs, then the construction $\phi_u(I_M[\Phi_A(⌜p⌝)])$ would be practical. Finding optimal programs is undecidable, so this goal is not reachable. However, if we find programs that are near to optimal, then approaches nearing the construction of Theorem 1 might be practical. In [Veldhuizen2004] one possible method for realizing such compilers is described, using “Guaranteed Optimization,” a new compiler design technique.

3. Safety-preserving embeddings

Let us now turn to the question of when there exist language embeddings that preserve judgments about safety properties.
Since useful safety properties are often undecidable, compilers approximate the set of safe programs in a conservative way. For example, many compilers incorporate a static typing phase that determines whether programs are well-typed in some formalism; programs that fail typing are rejected since they might be unsafe. When embedding one language into another, it is important that the set of programs judged to be safe is preserved. In particular we must avoid the possibility that a language embedding might allow us to run programs that fail safety checks in the source language.

In the real world, compilers react to programs they judge unsafe by producing no output program and issuing a variety of diagnostic messages. For ease of modelling, let us suppose compilers have one designated output Unsafe ∈ LM signifying a program that fails safety checks. The intent is that a compiler φ judges a program p to be unsafe exactly when φ(p) = Unsafe. There is then an obvious sense in which an embedding can be safety-preserving.

Definition 7. A safety-preserving embedding e : LA → Lu is a semantics-preserving embedding that preserves the set of programs judged unsafe, i.e., φu(ep) = Unsafe if and only if φA(p) = Unsafe.

We require that no programs in LM are equivalent to Unsafe except Unsafe itself, i.e., Unsafe has a singleton equivalence class under ~. This means, incidentally, that semantics-preserving (Defn. 2) implies safety-preserving.

Following a similar line of reasoning as before, we ask whether there are languages that are safety-universal, in the sense that any language may be embedded into it while preserving safety. There are two approaches we explore here. The first is to note an obvious, but somewhat unenlightening, corollary of Theorem 1:

Corollary 1. Any language meeting the criteria of Theorem 7 is safety-universal.

This follows because stage-preserving embeddings are semantics-preserving, and from the way we defined the special compiler output Unsafe, any stage-preserving transformation is safety-preserving (Defn. 7). Therefore any stage-universal language is also safety-universal.

For a more informative construction, let us consider compilers that employ a preliminary safety checking phase. We presume this safety checking phase implements a proof calculus ⊢ making judgments of the form ⊢ safe(p), indicating the program p is safe. This is a general framework that subsumes, for example, type systems; we can augment a typical type inference system with an additional rule of the form:

\[\frac{\vdash p : \tau}{\vdash \text{safe}(p)} \]

This states that if a program p can be given a type τ, then it is safe. We limit ourselves to effective proof calculi, i.e., those whose deductions are
computably enumerable, and in particular to relations safe(p) that are decidable. We will write \(\not\vdash \text{safe}(p) \) to mean “safe(p) is not a valid deduction of \(\vdash \).”

Theorem 2. Let \(L_A, \phi_A \) be a language and its compiler, and \(\vdash \) be an proof calculus with judgments of the form \(\vdash \text{safe}(p) \) for some \(p \in L_A \), such that the set \(\{ p \mid \vdash \text{safe}(p) \} \) is decidable. Let \(L_u, \phi_u \) be a language and compiler meeting the criteria of Theorem 1. Then there is a stage-preserving embedding \(e : L_A \to L_u \) such that \(\phi_u(ep) = \text{unsafe} \) if and only if \(\vdash \not\text{safe}(p) \).

Proof. Consider the function \(\phi'_A : L_A \to L_M \) given by:

\[
\phi'_A(p) = \begin{cases}
\phi_A(p) & \text{if } \vdash \text{safe}(p) \\
\text{unsafe} & \text{if } \not\vdash \text{safe}(p)
\end{cases}
\]

Since the set \(\{ p \mid \vdash \text{safe}(p) \} \) is decidable, i.e., \(\Delta^0_1 \), and \(\phi_A \) is \(\Sigma^0_1 \), the function \(\phi'_A \) is \(\Sigma^0_1 \). By the conditions of Theorem 1, there exists a u-function \(\Phi'_A \) realizing \(\phi'_A \) in the kernel of \(\phi_u \). Consider the embedding

\[
e(p_a) = I_M[\Phi'_A(\gamma p_a)]
\]

Following the reasoning given in the proof of Theorem 1, \(e(p_a) = \text{unsafe} \) if and only if \(\not\vdash \text{safe}(p) \), and \(e \) is a stage-preserving embedding. \(\square \)

A key requirement, implicit in the above proof, is that the function \(\Phi'_A \) must be able to produce \(\gamma \text{unsafe}\), i.e., the code of an unsafe program. The intuition we can draw from this is the following:

Any language with a Turing-complete kernel and the ability to construct at compile-time a condition signifying “unsafe program” is safety-universal.

4. Conclusions

Variations on extensible and universal programming languages have been explored for decades. We have examined a new twist on this theme, looking not just to languages that are *Turing-complete* (can perform any effective procedure) or syntactically extensible (can provide a domain-specific syntax), but to languages that are universal with respect to *staging* and *safety*. Such languages appear ideal for expressing domain-specific safety checks and optimizations, suggesting a route to realizing libraries and DSELs that are not only expressive, but also fast and safe.

References

